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Abstract 

We explain why quantum interference may pertain to a single degree of freedom and 
demonstrate how it can be exhibited by deterministic experiments involving a single 
particle. 

1. Introduction 

From the beginning of  quantum theory the p roNem of  interference has 
been a central issue. I t  was clear that interference in the quantum domain 
differs in fundamental respects f rom classical interference. In classical 
physics, interference is exhibited only by systems with many or an infinite 
number of  degrees of  freedom, e.g. sound waves or electromagnetic waves. 
In quantum physics, a system with a single degree of freedom may exhibit 
interference. This difference has presented the interpretation of the quantum 
type of interference with great difficulties. 

Consider, for example, the familiar two-slit interference experiment. For  
a classical wave, the description of the phenomenon is straightforward. In 

t This work was supported in part by O.A.R. Air Force Cambridge Research Labora- 
tones, Bedford, Mass., U.S.A., under Contracts No. AF 19(628)-5143 and AF 19(628)- 
5833, and by the Air Force Office of Scientific Research under Contract No. AFOSR 
68-1524. 

443 



444 YAKIR AHARONOV et  al. 

particular, there is no difficulty in understanding that the resulting pattern 
depends on contributions from both slits, since parts of the wave, corre- 
sponding to different degrees of freedom, pass through each slit. In the case 
of an electron or a photon, however, only a single degree of freedom is 
involved, and it is difficult to understand how there can be contributions 
from both slits. 

Furthermore, although quantum interference is exhibited by a single 
degree of freedom, both conceptual and actual quantum interference 
experiments always have involved a large number of particles. In the two- 
slit experiment the interference pattern emerges only when many particles 
have been registered on the photographic plate. Even though the inter- 
ference property pertains to the individual particle, no information regard- 
ing this property can be deduced from a single spot on the plate resulting 
from just one particle passing the slits. Thus, it has become an accepted 
view that quantum interference phenomena are inseparable from the 
statistical aspects of quantum theory. 

In this paper, we want to explain why quantum interference may pertain 
to a single degree of freedom, and to demonstrate how it can be exhibited 
by experiments involving a single particle. 

2. Deterministic Experiments 

Our approach is based on the notion of deterministic experiments. We 
call an experiment a deterministic experiment when we measure only 
physical variables for which the state of the system under investigation is an 
eigenstate. For any state ~b it is possible to ask the following question: 
What is the set of hermitian operators A for which ~b is an eigenstate, i.e. 
for which A(t)  ~b(t) = )(t) ~b(t) ? We call such operators eigenoperators of ~b. 
A measurement of an eigenoperator A would not lead to a collapse of the 
wave function, since the wave function was to begin with an eigenstate of 
the operator that was measured. We can perform a succession of such 
experiments in time. No statistics is involved; the results are completely 
predictable, i.e. the experiments are deterministic. 

As an example, consider a spin-�89 particle placed in a magnetic field 
pointing in the x-direction and with % = +1 initially. I f  some time t later 
we measure crz again, the result is not predictable; we get fluctuations and 
the experiment is therefore not a deterministic one. However, if instead 
we rotate our apparatus and measure the spin in the yz-plane in a direction 

= ~ot, where oJ is the Larmor frequency, then the result is predictable and 
we have a deterministic experiment. 

As a second example, consider a free particle of mass m which at t = 0 
is in the state ~b = Cexp[-xZ/(Ax)Z]. This state is an eigenstate of the 
hermitian operator A(0) = x z +pZ. At time t we can measure the eigen- 
operator A(t) = (x - p t / m )  2 +p2 with a predictable outcome, and thus we 
have again a deterministic experiment. 
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3. Eigenoperators for the Two-Slit Experiment 

Let ~b(x,y,t)=al~bl(x,y,t)+as~bz(x,y,t) be the wave function of a 
particle emerging from the two slits, where ~b2(x,y, t) = ~bl(x - l,y, t) and 
1 is the distance between the two slits. For simplicity we choose the y- 
dependence of ~b so that immediately after the particle emerges from the 
slits the overlap of ~bl and ~b2 is negligible. Our purpose is to find eigen- 
operators A(a~, as) which satisfy the condition 

A(al, a2) [al  ~bl(X) q- as  ~bl(X - l ) ]  = ~[a  I •l(X) --~ a 2 ~bl(X - I)] 

for all ~bl(X ) which vanish for Ixl I> l/a. 
Since for any choice of ~b I the action of A is analogous to that of a spin 

operator, we expect the A operators to form a spin algebra. In other words, 
there should exist three operators if1, ~2, if3 which satisfy the relations 

[4/, 6 j ]_  = ieuk 6g, [6i, 6S] + = 23iS 

AS is easily verified, these conditions are satisfied by 

sin (Trx/l) 
63 lsinOrx/l)l 

= c o s P /  . pl sin (rrx/l) 
61 s m  

sinP/+ . pl sin (~rx/l) 62 ,cos  

It is obvious that measurement of 6 3 tells which slit the particle went 
through, and that the other two operators give information about the 
relative phase between the two wave packets. For example, if the particle 
goes through the first slit, then 6 3 = 1, while if the particle goes through both 
slits with equal probabilities and with relative phase ~, i.e. 

~b = ~22 {exp [i(~/2)] ~b 1 + exp 

then 61 cos c~ + 62 sin a = 1. For any other choice of al and az we can make, 
just as in the analogous spin problem, a corresponding choice in the space 
of the &operators, and thus define the appropriate eigenoperator. 

The eigenoperators of the states produced in the two-slit experiment are 
functions of the modular momentum and position introduced in an earlier 
paper (Aharonov et al., 1969). As was shown in that paper, the equation 
of motion for modular momentum is non-local. This fact, which implies 
that the equations of motion for 6t and 62 are also non-local, explains the 
non-locality involved in quantum interference experiments. In such 
experiments, the motion of a single degree of freedom is affected by both 
slits, even though the potential describing the interaction between the 
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particle and the slits is local, i.e. a function of x only. This is in complete 
accordance with the fact that the non-locality in the time evolution of 
modular momentum is present even in the case of a local Hamiltonian. 

Thus we see that the difference between classical and quantum inter- 
ference has a dynamical origin. Classical dynamics, which is generated by 
the Poisson brackets, is always local. Therefore, the only way that two 
slits with local potential can affect a classical system passing through them 
is by each interacting with the degrees of freedom in its immediate vicinity. 
Quantum dynamics, on the other hand, is generated by the commutators 
which lead to a non-local behavior of interference eigenoperators, and 
hence a single degree of freedom can exhibit interference. 

4. Deterministic Interference Experiments 

The analogy between the ~7-0perators and the ordinary spin operators 
suggests that deterministic interference experiments should be analogous 
to the Stern-Gerlach experiment. For example, we should be able to 
distinguish between the orthogonal states ~b I + ~b2 and ~b~ - ~2 in an experi- 
ment performed on a single particle by producing a deflection proportional 
to the value of ~t. Customary experiments do not distinguish between these 
two states by observations made on a single particle. The desired deflection 
for our deterministic experiment may be produced by the Hamiltonian 

H = Ho - g(t) ~1 z 

where g(t) is switched on immediately after the particle has passed through 
the slits. This interaction will cause an acceleration in the positive z- 
direction if the state is ~b~ + ~b2 and an acceleration in the negative z-direction 
if the state is ~bl - ~b2. Ifg(t) is sufficiently strong, the resulting z-deflections 
will separate the two states completely, just as the analogous interaction 
does in the Stern-Gerlach experiment for the ordinary spin. 

The above Hamiltonian is consistent with the principles of non-relativistic 
quantum mechanics. Nevertheless, since the type of non-local interaction 
contained in the Hamiltonian violates the causality condition imposed by 
relativity theory, it is interesting to investigate whether one can perform 
deterministic experiments which involve only local interactions. That this 
is indeed the case is shown by the following two examples. 

Example L We use a procedure suggested by Lamb (1969). The crux of 
this procedure is to find a potential for which one of the two states to be 
separated is an eigenstate while the other is not. If this potential is switched 
on suddenly the first state will be 'trapped', while the second state, after a 
sufficient time, will have drifted away. To find such a potential is straight- 
forward. We simply solve the Schr6dinger equation 

v2 + V(x) = E (x) 
2m 
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for the potential and get 

[E + (h2/2m) V 2] r 
V ( x )  = - -  

It is easily seen that a direct application of  this procedure is not useful 
for the two interference states under consideration, i.e. ~b~ + r and q~ - ~bz. 
Indeed, as long as r and ~b2 do not overlap, any V(x) which traps ~bl + ~b2 
will also trap r - r Let H(r + r = E(r + r Then it follows that 
H~bl = E~bl, and thus that H ( r  r  E ( r  ~b2). To see this, write 

H~b~ = Er + 6r and H~b2 = E~b2 + a~b2 
Thus 

H(r  + r = E(r + r + 6r + 3r 
and hence 

+ = 0 

But since H is a local operator and r and r do not overlap, ~b I and ~b2 
do not overlap either, and therefore the last equation implies that 8~bt = 
,3r = o .  

This difficulty is overcome by bringing the two wave packets together 
before switching on the potential. This can be done by applying opposite 
forces to the two packets. Consider for simplicity a one-dimensional case 
where initially 

, [ (x - a)2\ exp ( (x + a)2] 
r  and  2=A _ 

The separation l = 2a is assumed to be large compared to the width Ax. 
The opposite forces produce a relative momentum 20 between the two 
packets, which then become 

(Ax) 2 ] exp (-iko x)and r ~ - ~  } exp (iko x) 

where hko = Po. After a period T = am/hko the two packets overlap com- 
pletely and the states ~b~ + r and ~b~ - r are 

r + r = A exp - cos ko x 

i(r - r -- A exp - ~-j~) sink0x 

(It is assumed that ko ~> l/Ax so that the dispersion of the packets during 
the period T can be neglected.) 

With this preparation, Lamb's method may now be applied. 

Example IL Consider the same one-dimensional situation as in the first 
example at the time when the two wave packets overlap. If the spread of 
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the wave packets, dx ,  is sufficiently large, ~b I + ~2 and ~b I - ~2 may be 
regarded as eigenstates of the free Hamiltonian 1to =p2/2m. It is then 
possible to switch on adiabatically a potential V(x) = cos 2k0 x which will 
remove the degeneracy of  the two states ~b~ + ~b2 and ~ba - ~b 2 and place 
~bx - $2 at the top of the first energy band of  the periodic potential and 
~bt + ~b2 at the bottom of the second band (Kittel, 1953). I f  we then add a 
constant force F(x) = Fo, then ~b~ + ~b2 will be driven in the direction of the 
force, while ~b I - $2 will be driven in the direction opposite to the force. 
In this way, a~ Stern-Gerlach type of measurement of eigenoperators for the 
two-slit interference experiment has been achieved. 
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